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Stimulus-locked responses of two phase oscillators coupled with delayed feedback
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For a system of two phase oscillators coupled with delayed self-feedback we study the impact of pulsatile
stimulation administered to both oscillators. This system models the dynamics of two coupled phase-locked
loops (PLLs) with a finite internal delay within each loop. The delayed self-feedback leads to a rich variety of
dynamical regimes, ranging from phase-locked and periodically modulated synchronized states to chaotic
phase synchronization and desynchronization. Remarkably, for large coupling strength the two PLLs are
completely desynchronized. We study stimulus-locked responses emerging in the different dynamical regimes.
Simple phase resets may be followed by a response clustering, which is intimately connected with long
poststimulus resynchronization. Intriguingly, a maximal perturbation (i.e., maximal response clustering and
maximal resynchronization time) occurs, if the system gets trapped at a stable manifold of an unstable saddle
fixed point due to appropriately calibrated stimulus. Also, single stimuli with suitable parameters can shift the
system from a stable synchronized state to a stable desynchronized state or vice versa. Our result show that
appropriately calibrated single pulse stimuli may cause pronounced transient and/or long-lasting changes of the
oscillators’ dynamics. Pulse stimulation may, hence, constitute an effective approach for the control of coupled

oscillators, which might be relevant to both physical and medical applications.
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I. INTRODUCTION

Transient responses of coupled oscillators to pulsatile
stimuli are relevant in several fields of the natural sciences
[1-4]. Such responses are typically studied by experimental-
ists to obtain information on dynamical systems and to char-
acterize the system’s inventory of reactions. For example,
transient short-term brain responses evoked by sensory
stimuli play a key role in the study of cerebral information
processing [5,6]. Furthermore, stimulus evoked responses as
measured with electroencephalography (EEG) are a standard
tool for neurological diagnosis [7]. A stimulus-locked re-
sponse of a neuronal population is typically analyzed with a
cross-trial averaging (CTA), where an ensemble of post-
stimulus responses is averaged across trials [5,8].

Several studies indicate that brain oscillations play a ma-
jor role in the generation of stimulus-locked EEG responses.
For instance, such responses are considered to be caused by
a phase reset of the alpha rhythm (in the 10 Hz frequency
range) [9-11]. The occurrence of a phase reset of a brain
rhythm means that the phase of this oscillation attains a pre-
ferred value at a particular time relative to stimulus offset
[1-4], which can be detected and quantified by means of
phase resetting indices [4,11-18].

However, recently it has been shown that phase oscillators
with instantaneous coupling may not just undergo a stimulus-
locked phase reset, but may react to pulsatile stimuli in a
more complex manner [14-18]. Apart from simple phase re-
sets such stimuli may elicit a response clustering, that means,
a switching between qualitatively different, in particular, an-
tiphase responses across trials: At a particular time relative to
stimulus offset the phase of an oscillator attains two or more
preferred values across trials. This phenomenon may by it-
self be interesting. However, even more important is that
response clustering can typically neither be detected with
CTA nor with typical phase resetting indices as defined by
Refs. [11-13] (compare Refs. [14—-18]).
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In other words, the standard tools for the analysis of tran-
sient neural responses are not sensitive to this particular
well-defined type of stimulus-locked responses. For this rea-
son, a stochastic phase response analysis has been developed
which allows to detect phase resets as well as response clus-
tering [4,14-18].

Next, the question arises whether response clustering and
possibly even more complex types of stimulus-locked re-
sponses occur in more complex oscillator models. If so, we
would like to know whether the data analysis available en-
ables us to detect such responses. Previous studies were per-
formed in coupled phase oscillators without any time delay
[14-18]. Delays are inevitable in natural systems and may
occur within and between oscillators [19-27]. It has been
shown that delays may severely alter the spontaneously
emerging dynamics of coupled oscillators [28—37]. Accord-
ingly, it is important to take into account the impact of delays
also on stimulus-locked responses.

We here study stimulus-locked responses of two coupled
phase-locked loops. A phase-locked loop (PLL) is a generic
device which may act with an internal delay and which is
used for adjusting its phase to the phase of an external ref-
erence signal [38-40]. PLLs are widely used in electrical
engineering [38] and can be implemented by software as
well as hardware [41]. Furthermore, PLLs can be found in
different parts and on different levels of the nervous system:
Both single neurons [42] and neuronal circuits [43,44] may
function as a PLL. In fact, several important neuronal cir-
cuits can be modeled by means of PLLs, for instance, in the
context of motor control [40,45] or sensory decoding
[44,46-48]. We study two nearly identical PLLs coupled
without delay. In other words, we couple these generic struc-
tures, assuming that, in a first approximation, we can neglect
the (transmission) delay between the PLLs compared to the
PLLs’ internal delay.
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FIG. 1. Schematic picture of an electrical circuit of two inter-

acting phase-locked loops with internal delay. The subscripts “i
and “o” stand for input and output signals, respectively.

Our analysis reveals several qualitatively different dy-
namical regimes of the coupled PLLs, which emerge sponta-
neously, i.e., in the absence of stimulation, depending on
model parameters. Apart from unistable dynamical regimes
we also observe multistability for a wide range of param-
eters. Furthermore, depending on the dynamical regime of
the stimulated system, its response to a stimulus can follow
completely different scenarios. In the phase-locked regime a
response clustering with two clusters occurs, comparable to
what has been found for two phase oscillators coupled with-
out delay [14-16,18]. In contrast, in the regime of periodi-
cally modulated phase synchronization we observe a re-
sponse clustering with stimulus-locked, time-varying
configuration: Relative to stimulus onset the ensemble of re-
sponses oscillates between states of a pronounced phase reset
and states with response clustering (with two antiphase re-
sponse clusters). Moreover, in the multistable regime stimu-
lation can induce a switching between different stable syn-
chronized states. In this way, a single-shot stimulus can even
completely change the type of the long-term dynamics of the
system, e.g., by shifting the system from a synchronized to a
desynchronized state.

We show that the time delay does not only cause a variety
of spontaneous dynamical regimes and corresponding tran-
sient responses. Rather, fundamental dynamical features,
such as the recovery after stimulation, may be completely
different compared to the case without time delay. A delayed
self-feedback leads to a pronounced vulnerability to appro-
priate stimuli. The latter prepare the system in a way that it
gets trapped in the infinite dimensional phase space, so that
the time it takes to recover (especially, to resynchronize)
increases in a nearly singular manner.

The paper is organized as follows. We introduce our
model equation in Sec. II. In Sec. IIl we present a short
description of the model’s dynamics, which emerges sponta-
neously. Stimulus-locked dynamics during stimulation, the
so-called “in-stimulus dynamics,” is studied in Sec. IV,
whereas Secs. V and VI are devoted to the “post-stimulus
dynamics,” the transient dynamics evolving after stimulus
offset, in unistable as well as multistable dynamical regimes.
We summarize and discuss our results in Sec. VII.

II. MODEL EQUATION

The dynamical equations of two coupled PLLs can be
derived based on the scheme shown in Fig. 1. A phase-
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locked loop is a device by means of which the phase of a
frequency-modulated oscillator output is obliged to follow
that of the input signal. It consists in general of three blocks:
phase detector (PD), loop filter (LF), and voltage-controlled
oscillator (VCO) [38]. Two signals are applied to a PD, the
output of which is a function of the phase difference between
the two signals applied. This error voltage, after being low-
pass filtered by the LF, is fed into the VCO in such a way
that the oscillator signal phase must follow the input signal
phase.

Let us consider the first PLL in Fig. 1 (left block). The
output signal yé”(t):A cos[ ¢,(1)] of the VCO with constant
amplitude A and time dependent phase i,(7), is retarded with
a delay 7. The superscript “(1)” refers to PLLI. The delayed
signal yé])(t— 7)=A cos[ ¢, (t—7)] is then applied to the phase
detector together with an external input signal of the form
yf”(t):B sin[¢,(1)]. The PD of the PLL has a sinusoidal
characteristic, producing an output signal which is propor-
tional to the product of the two incoming signals yl(,])(t)yf)l)
X(t—17). The next element of the PLL circuit is a low-pass
filter which eliminates high-frequency components, such that
the resulting signal (" attains the form u(V(r)
=K/2 sin[4(1) — i, (t— 7)], see also Refs. [38,39]. Finally, the
signal u")() is applied to the VCO which adjusts its instan-
taneous angular frequency proportionally to the incoming

signal around its central angular frequency ,:;(f)
=w,+uV ()=, +K/2 sin[ (1) — o, (1—1)].

The VCO output signal ygl)(t) is not only used within
PLL1, but is also sent to PLL2 (see Fig. 1). Passing through
the interconnecting block denoted by 7 in Fig. 1, the signal’s
phase is shifted by a quarter of a period. This phase shifted
signal then serves as input signal for PLL2: ygz)(t)
=A sin[¢,(7)]. The same derivation as above can be applied
to PLL 2, and we obtain the following equation for the phase

i, of the second PLL: y(1)=w,+K/2 sin[i,(r) = r(t1—17)],
where w; is the central frequency of the second VCO. There-
fore, the phase dynamics of the two coupled PLLs with the
internal delay 7 can be modeled by the following system of
two phase oscillators with time-delayed coupling:

0= 0+ 5 sinlgalt) = 1= 7]

) = o+ 3 sl ()~ gate =1, (D)

where parameter K plays a role of a coupling parameter (or
loop gain of PLLs [38]). w;, i=1,2 are the natural frequen-
cies of the oscillators, and 71is a time delay. According to Eq.
(1) the oscillators are coupled in a such a way that the time-
delayed self-feedback from each oscillator is combined with
an instantaneous signal from the other oscillator, respec-
tively. So, the output signal of each PLL serves as input
signal for the other PLL. In this way, each PLL serves as
external reference to which the other PLL has to adapt. Note,
we assume that the interaction between the PLLs is fast com-
pared to the internal delay 7. Accordingly, in a first approxi-
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mation we neglect external delays which may occur when
the output signal of a VCO of one PLL is sent to the PD of
the other PLL. The opposite case would be to neglect the
internal delay and take into account only a transmission de-
lay between the PLLs. In that case we obtain a system of two
coupled phase oscillators with transmission delay, which has
been studied by Schuster and Wangner [28].

We study responses of system (1) to strong external
stimuli S; administered to each oscillator (j=1,2). Further-
more, for both oscillators we introduce random forces F g
modeled by additive Gaussian white noise. In this way, the
following combined driving terms Y(¢), j=1,2, are added to
the right-hand side of Eq. (1), respectively,

Y(1) = X(0)] cos(y;— 6) + Fi(1) 2)

(compare Refs. [14-16,18]). S;(1)=X(#)I cos(;— 6;) models
the external stimulation of the jth oscillator. X(r)=1 or 0 if
the stimulus is on or off, respectively. / is the stimulus inten-
sity, 6, are stimulation phase shifts. F;(r) is a Gaussian
d-correlated noise with (F;(1))=0 and (F(1)F(7))=D&;t
—7), where D is a constant noise amplitude. Without loss of
generality, in this paper we consider the case 6,=0, i.e., only
the second oscillator ¢, is stimulated with the phase shift 6
=6, €[0,27] which turns out to be a main stimulation pa-
rameter. The stimulation protocol is explained in Sec. IV.

III. SPONTANEOUS DYNAMICS OF THE MODEL

In this section we briefly present the main dynamical re-
gimes of the two coupled phase oscillators with delay (1)
which emerge spontaneously in the absence of stimulation. A
more detailed study of dynamics of system (1) is reported
elsewhere [36,49].

We introduce the phase difference ¢; and the mean phase

(2]
@1(0) = (1) = Y (1),

e () =[h(0) + Y (1)]/2, (3)

so that system (1) reads

<P1(t)+<P1(t—T)>

(= A —Ksi
@i =4, Sm< 5

X cos[ @y(1) — @y (t = 7)],

2
X sin[ @,(1) — @y(r = 7)]. 4)

Here, A|=w,—w; is the natural frequency mismatch, and
A,=(w,+w;)/2 is the mean natural frequency. In the un-
coupled regime for K=0 each phase #; in system (1) grows
with its own frequency w; such that the phase difference
¢,(r) has the frequency A;. A desynchronized dynamics,
where the phase difference exhibits unbounded rotations, is
preserved in system (4) for small values of K provided that
A, #0. This is shown in Fig. 2(a), where an exemplary one-

¢z<r>=A2+§COS(M>
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FIG. 2. (a) Dynamical regimes of the phase difference ¢; in
system (4) versus coupling strength K. When the coupling strength
increases, system (4) undergoes a sequence of bifurcation transi-
tions from desynchronization via stable phase-locked and periodi-
cally modulated synchronized states to chaotic phase synchroniza-
tion and, finally, to desynchronization again. Stable and unstable
phase-locked states are depicted by solid and dashed curves, respec-
tively. For oscillatory regimes (limit cycles and chaotic attractors)
only local maxima and minima of the time courses of trajectories
are plotted. Kgy, Ky and Ky, K}, are the bifurcation values of K of
the saddle-node (SN) and Hopf (H) bifurcations. (b) Corresponding
frequencies () of the phase-locked states versus K. Examples of a
limit-cycle oscillation for K=0.8 and a chaotic attractor for K
=1.34 are shown in the [¢,(t-7), ¢,(¢)]-phase space in (c) and (d),
respectively. Parameters A;=0.2, A,=3.0, and 7=4.0.

parameter bifurcation diagram of system (4) is presented for
¢, versus K. When the coupling parameter K increases, a
stable phase-locked state P and a saddle phase-locked state
Q are born in a saddle-node bifurcation at K=Kgy, where
Ksy=0.235 in Fig. 2(a). In a phase-locked state, the phase
difference is constant and the mean phase grows with a mean
frequency ():

@)= ¢, @(r) = Qr + const. (5)

We also call the phase-locked states “fixed points”. Inserting
expressions (5) into Eq. (4) one obtains that the mean fre-
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quency () and the phase shift (pI of the phase-locked states
(5) obey

Q+A K Qry/1 A% 0 (6)
— + — (R S
ThyEy ST K’cos?(Qn)

. arcsin m N
¢ = ' A, (7)
o — arCSln(m) N

where the first and the second values of <pT in Eq. (7) corre-
spond to the signs “+” and “~” in Eq. (6), respectively.

The birth of the phase-locked states P and Q is induced
by the emergence of a pair of frequencies (), and €}, solu-
tions of Eq. (6), see Fig. 2(b). According to Eq. (5), {1 and
) are the mean frequencies of the two oscillators (1) in the
phase-locked states P and Q, respectively. The fixed point P
is stable for K € (Kgy,Kp), where Ky=0.61 is the moment
of its Hopf bifurcation [Fig. 2(a)]. At K=K}, the fixed point
P loses its stability and a stable limit cycle y emerges [Figs.
2(a) and 2(c)]. After the bifurcation, the phase difference
¢;(?) of trajectories attracted by vy is not constant and exhib-
its periodic oscillations. It is still bounded and, thus, a regime
of periodically modulated phase synchronization is estab-
lished in system (1).

The number of different solutions () of Eq. (6) grows as
the parameter K increases. For example, after the first pair of
frequencies )p an (), corresponding to the phase-locked
states P and Q, the second pair of solutions Qp, and QQ! of
Eq. (6) emerges at K=K, ~0.92 giving birth to a new stable
phase-locked state P’ and a saddle phase-locked state Q' of
system (1) [Fig. 2(a) and 2(b)]. The fixed point P’ is stable
for K e (Kgy.K};) and loses its stability with increasing K at
K=K;;~0.985 via a Hopf bifurcation. In this bifurcation a
stable limit cycle y' emerges [Fig. 2(a)]. With a further in-
crease of the coupling strength new pairs of stable and saddle
phase-locked states appear, corresponding to the emergence
of new solutions ) of Eq. (6). The stable phase-locked
states, exist in only narrow intervals of the parameter K val-
ues, bifurcate via supercritical Hopf bifurcations, loose their
stability, and give birth to stable limit cycles.

At larger values of K periodic motion in system (4) turns
into chaotic motion [Fig. 2(a) and 2(d)]. The phase difference
¢ still remains bounded, which indicates an emergence of a
chaotic phase synchronization according to definition in Ref.
[50]. Further, if K reaches some critical value K=K, an
attractor of chaotic phase synchronization undergoes a crisis
and system (1) returns to a desynchronized state, where the
phase difference ¢,(¢) displays unbounded rotations [Fig.
2(a)].

The stable phase-locked states of system (1) may coexist,
which leads to multistability. This takes place when the next
stable phase-locked state, say P’, is born before the previ-
ously emerging phase-locked state, say P, loses its stability
via a Hopf bifurcation. An example of two coexisting stable
phase-locked states is illustrated in Fig. 3. Here, both states
P and P’ are in-phase locked states with ¢, =0 with different
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FIG. 3. Coexistence of two stable in-phase-locked states P and
P’ with the same phase difference cpT:O, but with different frequen-
cies Qp=5.12 and Qpr=3.96, respectively. Time courses of the
mean phase ¢, are shown for stable states P (bold line) and P’ (thin
line). Parameters A;=0.0, A,=4.5, 7=1.4, and K=1.6.

frequencies ()p=5.12 and Qp,=3.96, respectively. The both
states are realized in system (1) for the same parameter val-
ues but for different initial conditions.

The multistability phenomenon emerges in system (1) not
only between stable phase-locked states, but also between
other synchronous and desynchronous states. For instance, in
Fig. 2(a) one can see that the stable fixed point P’ can coex-
ist with the stable limit cycle y and also two stable limit
cycles vy, and ' can coexist. For some other set of parameter
values, also a stable desynchronous dynamics, where the
phase difference ¢; exhibits unbounded rotations, and a
stable synchronous state with bounded ¢; can coexist in sys-
tem (1), as illustrated in Fig. 4. A region in the
(7,K)-parameter plain, where a stable synchronous state co-
exists with a stable desynchronous limit cycle is depicted in
Fig. 4(a). The lowest curve corresponds to the moment of the
birth of a stable phase-locked state P. As K increases this
point then bifurcates into a stable synchronous limit cycle y
via a Hopf bifurcation (middle curve). For parameter values
of the gray region between “phase-locking” and “desynchro-
nization” curves, system (1) displays a stable synchronized
motion, where the phase difference ¢; is bounded. On the
other hand, the hatched region corresponds to parameter val-
ues, where a stable desynchronous limit cycle u exists, char-
acterized by unbounded rotations of the phase difference ¢
on the torus. An example of the stable fixed point P coexist-
ing with the stable desynchronous limit cycle w is illustrated
in Fig. 4(b) for parameter values indicated by point A in Fig.
4(a). Depending on the initial conditions, system (1) displays
one or the other stable dynamics.

Below we study the responses of system (1) on stimula-
tion (2) in the following four dynamical regimes: (i) a single
stable phase-locked state, (ii) stable, periodically modulated
synchronization, (iii) bistability of two phase-locked states,
and (iv) a regime of bistability of a phase-locked state and a
desynchronous limit cycle. We explore the intertrial cluster-
ing of the oscillators’ responses emerging during in- and
post-stimulus transients for a stimulated phase-locked state.
Optimal parameter values are detected, where recovery time
(i.e., the duration) of the post-stimulus transient gets maxi-
mal. We also uncover the mechanism of such a maximal
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FIG. 4. Coexistence of stable synchronized and desynchronized
states of system (1). (a) Bifurcation diagram in the (7, K)-parameter
plain. The gray and hatched regions correspond to the existence of
stable synchronized and desynchronized states, respectively. (b) Ex-
ample of the coexistence of the stable desynchronous limit cycle u
and the stable phase-locked state P (asterisk) for parameters K
=0.28 and 7=7.2 indicated by point A in (a). Other parameters A,
=0.2 and A,=0.1.

transient. For a stimulated periodically modulated synchro-
nized state we analyze the post-stimulus transient and com-
pare it with that of a phase-locked state. Finally, for stimu-
lated multistable regimes we provide an evidence of
stimulus-induced switching between synchronized and de-
synchronized motions.

IV. DYNAMICS DURING STIMULATION

In the framework of a statistical approach to transient
stimulus-locked dynamics [14-18], (see also the Appendix)
we consider the following stimulation protocol: A series of N
identical stimuli (2) are administered to system (1) consecu-
tively one stimulus after the other. Each stimulus acts only
during a short time interval of duration 7. The length of the
interstimulus intervals is stochastically varied from one
stimulus to another and is large enough to let the system
return to its own dynamical regime, before the next stimulus
is applied. Around each stimulus a time window of the length
T, is attached, in which the evaluation of the trajectories of
system (1) is performed across trials. During a post-stimulus
transient, when stimulation is off (X=0), system (1) relaxes
towards its stable state displaying different kinds of re-
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sponses to the stimulation. These post-stimulus responses are
the subject of our study. The goal of our approach is to detect
stereotypical features of the (transient) dynamics of the
phases ¢ and i, the phase difference ¢;, and the mean
phase ¢, in an ensemble of post-stimulus responses.

Let system (1) be first stimulated in a regime, with only
one stable phase-locked state. For this, the values of the pa-
rameters of system (1) are chosen such as in Fig. 2(a), where
a stable fixed point P and a saddle point Q exist. Generic
system responses extracted from N=300 stimulation trials
with a stochastic phase response analysis [14-16,18] are pre-
sented in Fig. 5.

We use cross-trial distributions of the variables i, , and
@1, [Figs. 5(a), 5(c), 5(e), and 5(g)] and the corresponding
stimulus-locked indices (see the Appendix) [Figs. 5(b), 5(d),
5(f), and 5(h)] to study the stimulus-locked dynamics. Before
stimulus onset the phases ¢; and ¥, are uniformly distributed
in [0,27) since stimuli are administered randomly. Accord-
ingly, both resetting indices p; and clustering indices «;, j
=1,2, are close to 0. A stimulus of the form 7 cos(;— 0)
[see Eq. (2)] of sufficient strength (/>>K) and duration rap-
idly resets the phase of the jth oscillator to the phase .
+0; [14-16,18] [see also Eq. (10)]. Hence, at stimulus offset
the resetting indicesp; and p, are close to 1, which indicates
a complete reset of the phases. The phases ¢, and ¢, are
reset to particular values ,(15) and (1g) irrespective of
their initial values at stimulus onset, where ¢ denotes stimu-
lus offset. Note, i,(15) # (tz) due to the nonvanishing shift
term 6, of the second stimulus [Eq. (10)].

Before stimulus onset the two oscillators are strongly syn-
chronized with a nonvanishing phase difference ¢, [Fig.
5(e)]. This stereotypical phase relationship between the two
oscillators shows up as a dirac-type pre-stimulus distribution
of ¢; and, thus, the synchronization index o is close to 1,
where the value of the phase difference ¢; remains fixed
within the entire prestimulus interval. The stimuli reset the
oscillators in a way that their phase difference is set to a
value different to that of the pre-stimulus range [Fig. 5(e)].
This processes is reflected by a quick decrease and subse-
quent reincrease of the synchronization index o, which oc-
curs directly after stimulus onset [Fig. 5(f)].

After stimulus offset the oscillators relax back to their
stable prestimulus phase difference. This is achieved in two
different ways, where one of the oscillators speeds up rela-
tive to the other one, respectively [Figs. 5(a) and 5(c)]. Ac-
cordingly, the phase difference either increases (mod 27r) or
decreases [Fig. 5(e)]. This two-branch type resynchroniza-
tion process of ¢; shows up as a transient epoch of desyn-
chronization, where the synchronization index o of ¢; de-
creases [Fig. 5(f)]. The clustering index & of the phase
difference ¢; gets maximal when the two branches are in
antiphase position. A further consequence of the two
branches of transient trajectories is the emergence of a re-
sponse clustering of both oscillators ¢; and ,: After stimu-
lus offset the oscillators restart from the reset state [Figs. 5(a)
and 5(c)], the resetting indices p; and p, decrease, whereas
the clustering indices «; and «, increase above the prestimu-
lus level, indicating an anti-phase response clustering [Figs.
5(b) and 5(d)]. Put otherwise, after an initial reset each os-
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FIG. 5. (Color) Stimulus-locked responses of system (1) stimu-
lated in the phase-locked regime with signal (2). Cross-trial distri-
butions of the phases ¢, ¢, the phase difference ¢;, and the mean
phase ¢, are shown in (a), (c), (e), and (g), respectively, where the
density of trajectories is encoded by a gray scale (minimum is
white, maximum is black). Onset (at time r=0) and offset of the
stimuli are indicated by vertical red lines. Characteristic features of
the stimulus-locked dynamics as revealed by cross-trail indices (see
the Appendix and Refs. [14-16,18]): The resetting indices p; and p,
and the clustering indices «; and @, of the phases ¢ and i, are
shown in (b) and (d); the synchronisation indices o and o, and the
clustering indices 6; and &, of the phase difference ¢; and the mean
phase ¢, are shown in (f) and (h). The resetting/synchronization
indices (green curves) and the clustering indices (blue curves) de-
tect whether the corresponding cross-trial distribution has one pro-
nounced peak or two pronounced antiphase peaks. Number of
stimuli N=300. Parameters: A;=0.2, A,=3.0, K=0.4, 7=4.0, and
6=2.075.

cillator displays two anti-phase types of responses across tri-
als. This corresponds to the cross-trail distribution of ¢; hav-
ing two antiphase peaks [Figs. 5(a) and 5(c)] (see the
Appendix).

Additionally, there is a clustering process of the mean
phase ¢, [Figs. 5(g) and 5(h)]. As one can see in Fig. 5(g),

PHYSICAL REVIEW E 73, 066220 (2006)

this clustering process occurs already during stimulation, di-
rectly after stimulus onset, where two antiphase clusters of
the variable ¢, are formed. During the post-stimulus tran-
sient these clusters get slightly smeared. Correspondingly,
the prestimulus resetting and clustering indices o, and &, of
the mean phase are close to zero because of the randomized
stimulus administration [Fig. 5(g)]. The clustering index &,
first quickly increases after stimulus onset, and then, after a
transient slight decrease, finally remains above the prestimu-
lus level, as soon as the resynchronization is achieved [Figs.
5(e) and 5(f)]. The combination of increased &, and almost
zero o, is indicative of two antiphase peaks of the cross-trial
distributions of ¢, [Fig. 5(g), see also Refs. [14-16,18]]. The
numbers of trials in each cluster (i.e., peak of the bimodal
cross-trial distribution of ¢,) are 149 and 151, out of a total
N=300 stimulation trials. In contrast, in [Figs. 5(a), 5(c), and
5(e) the phase variables #; and #,, and the phase difference
¢, simultaneously split into two antiphase clusters with 140
and 160 trials, respectively. Therefore, the clustering of the
variable ¢, does not correspond to the post-stimulus cluster-
ing of the other variables, as we will also show below.

We consider the formation of the response clusters in
more detail. We show that the response clustering of the
phase difference ¢, plays an important role in the formation
of the response clustering of the phases ¢, and ,. For this,
we first investigate the dynamics of system (1), (2) during
stimulation, i.e., in-stimulus dynamics of Egs. (1), (2). Sec-
ond, we study the post-stimulus transient of system (1).

In-stimulus ~ clustering. If a strong stimulus (2)
(I’> w;,I>>K) is applied to system (1), a phase reset occurs
(Fig. 5). This means that in a short transient after stimulus
onset, stimulation shifts both phase oscillators (1) to a
stimulus-locked state, where both phases become constant.
Considering system (1), (2) in variables (3) during stimula-
tion, and neglecting the coupling (because K</ and w; <),
we obtain a new system:

g?fl(t) =-2] sin<—¢1(2 - a)sin(@(t) - g) ,

sz(t) =Icos(%_g)cos<¢2(t) - g), (8)

where the variables ¢; approximate the variables ¢; defined
by Eq. (3). For strong enough stimulus (2), system (8) gov-
erns the in-stimulus dynamics of Egs. (1), (2). It has the
following stationary solutions [&,(7), &,(1)]=(&,, &,):

0 m
(P2:_+_m,

5+3 nm e 7. 9)

6; =60+ mn,
Since system (8) is 4 periodic in @; and 27 periodic in &,,
it has eight different fixed points (9) in the [0;47)
X [0;2)-phase space: two stable nodes A=(0, 6/2+§) and
B=(6+ 21, 6/2+) with eigenvalues A ,=—1, two unstable
nodes (0, (9/2+3777 and (0+27T, 0/2+57") with eigenvalues
N o=1I, and four saddles (6++2mn,0/2+wm) with n,m
=0,1 and eigenvalues =1, A,=—I. In Fig. 6 the phase por-
trait of system (8) with fixed points (9) and with stable and
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FIG. 6. Fixed points of system (8) induced by stimulation. Black
filled circles (points A and B) indicate stable nodes, empty circles
indicate unstable nodes, and diamonds indicate saddles. Dashed and
solid lines depict stable and unstable manifolds of the saddles, re-
spectively. Basins of attraction of the stable fixed points A and B are
indicated by white and gray areas, respectively. The vertical dotted
line shows the ¢;-coordinate <p(ls) of the stable phase-locked state of
system (1) and corresponds to the initial conditions of the system
(4) at stimulus onset. Parameters: 6=4.11, A;=0.2, A,=3.0, K
=0.4, and 7=4.0.

unstable manifolds of the saddles is shown for 6=4.11. The
net formed by the stable manifolds of the saddle points
(dashed lines with arrows) divides the whole (&;, @,)-phase
plain into basins of attraction of the stable fixed points A
(white regions) and B (gray regions). Therefore, for r=0 a
generic trajectory [@,(2),&,()] of system (8) will be at-
tracted by either the stable fixed point A or B, depending on
the basin of attraction in which the trajectory starts, as given
by initial conditions [&,(0),$,(0)]. During stimulation the
phases ¢; of system (1), (2) approach a stationary reset state:
Both phases become approximately constant (Fig. 5). The
corresponding coordinates (¢, ¢,) in the reset state are ap-
proximated by the coordinates of the stable fixed points A
and B of the approximative system (8).

The initial conditions [$;(0),®,(0)] of system (8) equal
the values of the variables [¢;(z),@,(f)] of system (4) at
stimulus onset. For the stimulated phase-locked states (5) the
initial conditions [¢,(0), ,(0)] attain the following values:
In all trials the phase difference reads ¢](0)=go(ls), whereas
the mean phase ¢,(0) fills the whole segment [0;27) across
trials. The latter fact is because of the linear growth of the
mean phase ¢, according to Eq. (5) and randomly varying
interstimulus time intervals. Here, (,o(ls denotes the ¢; coor-
dinate of the stable fixed point of system (4), for example,
point P shown in Fig. 2(a). Hence, summarizing the initial
conditions of Eq. (8) over all stimulation trials, one can rep-
resent them as a vertical segment qo(f) X[0;27r) in the phase
space in Fig. 6 [dotted line]. The fixed points A and B of Eq.
(8) are located on different sides with respect to the initial
segment above (when consider a lift of the torus [0;27)
X [0;47) to R?), i.e., on different sides with respect to the
initial phase shift ¢I(O)=go(f>. Therefore, during in-stimulus
transient on the way towards the fixed point A (B), the phase
difference @,(r) increases (decreases). Furthermore, during
the in-stimulus transient ¢, approaches either A or B, accord-
ingly. Such a splitting of the trajectories of system (8) be-
tween the basins of attraction of the reset states A and B is
the mechanism which causes the in-stimulus clustering in
system (1), (2), see Fig. 5.
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FIG. 7. In-stimulus clustering illustrated for a few trajectories of
the stimulated system (1), (2) with different initial conditions. Vari-
ables ¢;(¢), @2(1), ,(2), and (1) are separately shown on each
plot. In-stimulus clustering is induced by attraction to different reset
states A or B (Fig. 6). Two selected trajectories belonging to differ-
ent clusters are denoted by numbers 1 and 2. The on- and off-sets of
stimulation are indicated by vertical dashed lines. #=4.11 and the
other parameters are as in Fig. 5.

The clustering phenomenon for the in-stimulus transient
of system (1), (2) is additionally illustrated in Fig. 7, where
transients towards A and B are shown for a few selected
trajectories of Egs. (1), (2). Trajectories such as No. 1 are
attracted by A and their coordinate ¢; increases, whereas
trajectories such as No. 2 are attracted by B and ¢, decays.
Note, the two reset states given by the fixed points A and B
of Eq. (8) are indistinguishable when considering cross-trial
distributions of the variables ¢;, j=1,2, and ¢, taken modulo
2 (Fig. 5):

(1, ) = (7/2, 0+ 7/2) corresponds to
(@1, ¢2) = (6,6/2 + 7/2) (A) and

(¢1,90) = (6,612 +37/2) (B). (10)

The trajectories’ twofold convergence to the reset states A
and B constitutes the in-stimulus response clustering of the
mean phase ¢, [Fig. 5(g)]. Two trajectories belong to differ-
ent clusters if they are attracted by different reset attractors A
or B, see Figs. 6 and 7. Consider a clustering measure H
defined as the relative number of trajectories of system (1),
(2) within the smallest cluster during the in-stimulus tran-
sient. Evidently, H € [0;0.5]. This clustering measure can be
calculated as a function of @ if one compares the numbers of
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FIG. 8. Clustering measure H, i.e., the relative number of tra-
jectories in the smallest cluster during in-stimulus clustering of sys-
tem (1), (2) versus stimulation phase shift 6. Solid line shows the
theoretical estimation according to Eq. (11) and crosses show re-
sults of a series of numerical simulations of system (1), (2) for
different values of 6. <p(15) denotes the ¢; coordinate of the stable
fixed point of system (4). Parameters A;=0.2, A,=3.0, K=04, 7
=4.0, and N=1300.

trajectories {(¢,(7), ¢,(2))} of system (1), (2) belonging to the
basins of attraction of points A and B at the stimulus onset
time moments. For the case, where the mean phase ¢,(z) fills
the segment [0;27) uniformly over stimulation trials, the
clustering measure H is the length of fractions of the seg-
ment (p(ls) X [0;2) that belong to the basin of attraction of A
or B (Fig. 6). Under this condition, the following formula
gives an approximation of the clustering measure H:

(5) _ _
H(6) = [(ey 0)12110d27T] 77 +%_ (1)

The graph of the clustering measure H given by Eq. (11)
(solid line in Fig. 8) is in good agreement with the values of
H obtained by simulating system (1), (2), (crosses in Fig. 8).
There is an optimal value of the parameter 6= Bclz(qo(ls)
+)mod 27, where the in-stimulus clustering is maximal,
i.e., the two emerging clusters are of equal size. This situa-
tion occurs if the ¢, coordinates of the saddle fixed points of
system (8), which are 8+ 7+2mn, n=0,1, coincide with the
¢, coordinate <p(ls) of the stable fixed point P. In this case
equally long fractions of the segment (p(ls) X [0;24r) belong to
the basins of attractors A and B, respectively, as shown in
Fig. 6.

The in-stimulus clustering determines the post-stimulus
clustering of the mean phase ¢, (Fig. 5), where the clusters
of trajectories emerging during stimulation are preserved
during the post-stimulus transient. For short and weak stimu-
lation, when the phases are reset for a time smaller than the
delay 7, the in-stimulus clustering of the phase difference ¢,
also plays an important role for the post-stimulus clustering
of the phases ¢; and ),. However, in case of a strong and
long enough stimulus, the in-stimulus clustering is of minor
importance for the post-stimulus clustering of the phase vari-
ables ¢, and i,. Below we explore in which way the global
structure of the phase space of system (4) influences the post-
stimulus clustering in system (1), (2).
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V. POST-STIMULUS TRANSIENT TO A SYNCHRONIZED
STATE

Stimuli of sufficient strength and duration shift the trajec-
tories of system (1), (2) very close to the reset state (10),
where they remain till the end of the stimulation. After
stimulus offset system (1) returns back to its own stable
state. In this section we study the post-stimulus transients of
system (1) occurring in the phase-locked and periodically
modulated synchronized regimes.

A. Stimulation of phase-locked states

Let us, as before, consider the case, where system (1) has
a singe stable phase-locked state P. After stimulus offset,
trajectories relax from the stimulus-induced reset state (10)
towards the phase-locked state P. An example of such a tran-
sient is shown in the cross-trail distributions in Fig. 5. One of
the important characteristics here is the transient time 7},. We
define the transient time T, as the time it takes a trajectory
after stimulus offset to permanently enter into an & vicinity
of the stable phase-locked state, averaged over the ensemble
of N stimuli. We study how T}, depends on the stimulation
phase shift € for long and strong enough stimuli.

An example of the transient time 7}, calculated for the
stimulated system (1), (2) without delay, i.e., for 7=0 in Eq.
(1), is shown in Fig. 9(a) versus 6. One can see that there are
two critical values of the stimulation phase shift 6,,, and
0,1in» Where the transient time attains its maximum and mini-
mum, respectively. Moreover, the stimulus length 7 has a
minor influence on the transient time 7, as demonstrated for
T,=0.75,2.25, and 4.75 in Fig. 9(a), where the three curves
for the different stimulation times coincide. The critical val-
ues Oy, and 6,,,, correspond to the stable P and the unstable
Q fixed points of system (4) without delay with ¢, coordi-
nates (p(ls)zO.SZ and <p(1“)22.62, respectively. Evidently, in
order to obtain the longest post-stimulus transient in system
(1), (2) without delay, the stimulation has to shift the trajec-
tories towards the unstable fixed point of Eq. (4). This can be
done by a proper choice of the stimulus phase shift 6,
namely, 6 has to be taken equal to the ¢, coordinate cp(l") of
the unstable fixed point Q.

The situation is different if the stimulated system has a
significant time delay. This is illustrated in Fig. 9(b), where
the transient time T, is plotted versus @ for the delay 7
=4.0 and for the same three values of the stimulus length as
above T=0.75, 2.25, and 4.75. For parameter values as in
Fig. 9(b), system (4) has two fixed points: stable P and
saddle Q with coordinates <p§”%0.997 and go(l")z2.583, re-
spectively, see Fig. 2(a). If the stimulation time T is rela-
tively small (in comparison with the delay 7), the transient
time T, still has a maximum, which is not directly located at
the coordinate go(lu) of Q but close to it [maximum 1 in Fig.
9(b)]. The dependence of the transient time on the phase shift
6 undergoes a significant change when T increases: The
maximum of T, is shifted to the left [maximum 2 in Fig.
9(b)] and finally saturates at a critical point 6, located
between the stable fixed point P and the unstable fixed point
O [Fig. 9(b)]. Therefore, in order to obtain the maximal post-
stimulus transient time in the system with delay (1) stimu-

066220-8



STIMULUS-LOCKED RESPONSES OF TWO PHASE...

45 -

(a)

40

§®

Ne-

MO) ()
¢ ¢y 0

FIG. 9. (Color) Transient time T, for the post-stimulus relax-
ation of system (1), (2), necessary to reestablish its stable phase-
locked state, versus stimulation phase shift 6. Delay: (a) 7=0 and
(b) 7=4.0. In both plots three graphs are shown for different stimu-
lus lengths T=0.75 (blue), Ty=2.25 (red), and T, =4.75 (green).
Coinciding curves in (a) are indicated by a black curve. Maxima of
blue and red curves in (b) are indicated by “1” and “2,” respec-
tively. (pl‘Y and <p(") indicate the ¢; coordinates of the stable and
unstable fixed points of system (4), respectively. Number of stimuli
N=200 and £=0.05. Parameters: A;=0.2, A,=3.0, K=0.4, I=30.0.

lated with signal (2) of sufficient duration, one has to stimu-
late the system into a neighborhood of an optimal point 6,
which is different from the ¢;-coordinate of the unstable
fixed point. Below we investigate the properties of this opti-
mal point of the maximal transient in more detail.

Let us consider a stimulation which is long and strong
enough. If system (1), (2) is reset for a time larger than the
delay 7, the initial condition of system (1) at stimulus offset
can be approximated by constants of the form (10) (see Sec.
III). Thus, the strong reset stimulation constitutes an initial
value problem for system (4) with initial values (10). We
study the transient post-stimulus dynamics of the stimulus-
free system (4) towards its stable phase-locked state for con-
stant initial conditions gol(t)=<p(10)=6 and goz(t)=go(20)=(0
+m)/2+an, n=0,1, te[-7;0]. It is easy to see that the
dynamics of system (4) does not depend on the constant
initial value goz Hence, we fix it qoz )=0.

We explore the difference in the dynamics of system (4)

for the two distinct constant initial conditions go(lw—(p(l”) and
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FIG. 10. (a) Transients of system (4) towards the stable fixed
point P occurring for two different constant initial conditions (p( )
=2.58~= (,o(”) (thin line) and <p(0)—1 86~ 6, (bold line). go() nd
<p(1 ") are the ¢; coordinates of the stable P fixed pomt and the saddle
fixed point Q, respectively. Transients from <p(1 and from 6,,,, are
shown in (b) and (c), respectively, in the [¢,(1—7), ¢,(¢)] projection
of the phase space. (d), (e) Successive enlargements of (c) around
the ¢; coordinate (p(lu of the unstable fixed point Q. Parameters:
A1=0.2, A,=3.0, 7=4.0, and K=0.4.

gp(lo) Omax- These initial states correspond to a stimulation

which brings system (1), (2) into a vicinity of the unstable
phase locked state Q or the optimal point 6,,,, of the maxi-
mal transient, respectively. Figure 10(a) illustrates the time
course of trajectories originating from such initial conditions.
The difference in the transient time for both cases is obvious:
The trajectories enter an e-neighborhood of the stable fixed
point P after transient time 7,~65 for ‘P(l) (1 and T,
~ 125 for (P(o) Omax (With €=0.01). Moreover, in the latter
case the trajectory spends a long time in an almost stationary
regime, where ¢, (¢) closely approaches the coordinate go(lu) of
the unstable fixed point Q. The transients in the [¢(z
—7),¢,(1)] projection of the phase space are illustrated in
Figs. 10(b)-10(d) for these two initial conditions. In the first
case depicted in Fig. 10(b), where go( )—<p(1 , the trajectory
leaves a vicinity of Q and directly splrals to the stable fixed
point P which is a stable focus. In the second case depicted
in Fig. 10(c) [with enlargements in Figs. 10(d) and 10(e)],
where cp<10)= Omax. the trajectory exhibits a different itinerary:
The trajectory starting at the optimal value of the initial con-
dition (,o(lo)=6max, first, very closely approaches the unstable
fixed point Q and stays there for a long time before it is
finally attracted by P. Such kind of a transient takes longer
than that in the first case of (,0(10)= (p(lu) [Figs. 10(a) and 10(b)].

The unstable fixed point Q=[¢, (1), ¢,()] of system (4)
has the following coordinates in the infinite-dimensional
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FIG. 11. (a) A few eigenvalues \; with the largest real parts of
the saddle-focus fixed point Q are depicted by empty circles in the
complex plane. (b) Intersection of the stable manifold M® of the
saddle-focus fixed point Q with the class of functions (12) depicted
by dashed curve in the (a,())-parameter plane. The stable fixed
point P and the saddle fixed point Q are shown by filled and empty
circles, respectively. The stable manifold intersects the axes (2=0 at
the point 6, ~ 1.86. Parameters A;=0.2, A,=3.0, 7=4.0, and K
=0.4.

functional phase space of Eq. (4): (pl(t)=<p(1”)

and @,(t)
=)yt +const, where cp<1”) ~2.58 and (== 3.06 for parameter
values as in Fig. 10. As mentioned above, a long and strong
stimulation (2) results in an almost complete reset of system
(1), (2), such that the post-stimulus transient of system (1)
starts from almost constant initial conditions with (p(lo): 6 and
cp<20)=const. Due to this mismatch in ¢, the steady initial
conditions are still far from the coordinates of the unstable
fixed point Q even if @ is taken equal to (pl"). Therefore, if the
stimulus shifts ¢, into a vicinity of (p(l"), ie., if 6= <p(1“), the
fixed point Q has a minor influence on the post-stimulus
dynamics of system (1) and the transient time appears to be
relatively small [Figs. 10(a) and 10(b)]. This is in contrast
with the stimulation of coupled oscillators without delay,
where the maximal transient time is attained for stimulation
with 0:(,01") [Fig. 9(a) and Refs. [14-16,18]]. In contrast for
the stimulated system with delay (1), (2), there is another
optimal value of the stimulation phase shift = 6,,,, at which
the transient time is essentially larger than that for the other
values of 6 and attains its maximum (Fig. 10). At this opti-
mal value of the stimulation phase shift the unstable fixed
point Q significantly affects the post-stimulus transient dy-
namics, although the initial conditions of system (1) for the
post-stimulus transient for #=6,,, appear to be even more
remote from Q than those for 6= qo(lu).

The fixed point Q of system (4) is of a saddle-focus type.
Its eigenvalues are depicted in Fig. 11(a). Q has one real
positive eigenvalue, one zero [74], and the others are com-
plex conjugate with negative real parts. Therefore, the fixed
point O has a one-dimensional unstable manifold corre-
sponding to the positive eigenvalue and an infinite-
dimensional stable manifold M corresponding to the com-
plex eigenvalues with negative real parts. If a trajectory of
system (4) comes close to M, it will then follow the mani-
fold and approach the saddle point Q very closely, spending
a long time there. Approaching the fixed point Q, the trajec-
tory comes close to the unstable manifold of Q and, thus, it
will eventually be repelled from Q by its unstable manifold
and finally be attracted by the stable fixed point P. This
situation is realized during the post-stimulus transient of sys-
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tem (1), (2) for the stimulation phase shift = 6,,,, or close to
that. This can be seen in Figs. 10(c)-10(e), where the trajec-
tory of Eq. (4) spirals to Q following M), thereby exploring
a characteristic focus shape of the stable manifold of Q, and
only thereafter that being attracted by P.

The itinerary of the trajectory shown in Figs. 10(c)-10(e)
reflects the property of the saddle fixed point Q that its stable
manifold M has an intersection with a class of constant
initial conditions of system (4). To illustrate this fact, con-
sider the following class of linear functions

b)) =Qt—al2, () =Qt+ a/2. (12)

Taking functions (12) as initial conditions for system (1) we
find regions in the («,{))-parameter space, where the trajec-
tories demonstrate different transients on their ways towards
the stable fixed point P born in a saddle-node bifurcation
together with Q. The transients differ with respect to whether
or not the variable ¢; rotates once through a cycle of 27
before being attracted by P. In other words, we find a bound-
ary between basins of attraction of P and its copy shifted by
2r. This boundary is depicted in Fig. 11(b) by a dotted curve
in the (a,())-parameter space. It goes through the saddle
fixed point Q and is the intersection of the stable manifold
MY of Q with the class of functions (12). The manifold
serves as separator between the two different kinds of post-
stimulus transients of system (1). The stable manifold also
intersects with the axis =0, i.e., it intersects with the class
of constant initial conditions of system (1) at the point «
=60~ 1.86 which is the phase shift of the maximal post-
stimulus transient considered above (Fig. 10). This demon-
strates the central role of the stable manifold M of the
saddle point Q in the post-stimulus dynamics of the stimu-
lated system (1), (2).

The existence of the intersection point 6, of the line
{Q=0} with the stable manifold of Q [Fig. 11(b)] means that
for a long and strong stimulation of system (1), (2) there
exists an optimal value of the stimulation phase shift 6,
such that for 6= 6,,, a very long post-stimulus transient
occurs. Theoretically, T,—® as 68— 6, and when the
post-stimulus initial conditions directly fit the stable mani-
fold M of the fixed point Q. The trajectory will then be
directly attracted by O and will never relax to the stable fixed
point P. Put otherwise, the trajectory gets trapped by the
stable manifold M ). However, this limiting case is difficult
to be realized in practice, because of the inevitable noise and
the mismatches in the stimulus-induced reset. Nevertheless,
even with noise, the transient time at 6= 6,,,, or close to 6,,,,
is significantly larger than that for the other values of 6. This
is illustrated in Fig. 12, where a few trajectories of system
(1), (2) stimulated with noise and stimulation phase shifts
0= (p(lu> [Fig. 12(a)] or 6=6,,,, [Fig. 12(b)] are plotted. Com-
paring the results of the calculations shown in Fig. 12 with
those in Fig. 10, one finds that the trajectories still follow the
corresponding itineraries as in the case of ideal constant ini-
tial conditions, which provides evidence for longer transients
for the optimal value of the stimulation phase shift 8=6,,,,.

The optimal stimulation phase shift 6,,,, has another im-
portant property. In addition to causing of the maximal tran-
sient time, 6, is also connected with maximal clustering of
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FIG. 12. Post-stimulus transients of system (1), (2) stimulated
with (a) 6#=2.583= ¢} and (b) 6=1.87~= 6, and with Gaussian
white noise with D=0.001. Parameters /=15.0, T=4.5, A;=0.2,
A,=3.0, 7=4.0, and K=0.4. The number of stimuli N=15 in both
plots.

the post-stimulus responses of system (1), (2) in the ¢, vari-
able (phases ¢, and i, respectively). The clustering of the
post-stimulus responses can be seen in Figs. 5(a), 5(c), 5(e),
and 12(b). The clustering measure H, i.e., the relative num-
ber of trajectories within the smallest cluster in variable ¢,
for the post-stimulus transient is plotted in Fig. 13 versus
stimulation phase shift . Maximal clustering is attained at
0=1.87=6_,, which is very close to the theoretically ob-
tained point of the maximal post-stimulus transient (Figs. 10
and 11). This phenomenon is connected with the properties
of the stable manifold M of the saddle-focus fixed point
Q. The manifold serves as separator between two different
kinds of the post-stimulus transients of system (4). In this
connection, the optimal value 6,,,, can also be referred to as
a separator of the post-stimulus trajectories of system (4).
Indeed, as mentioned above, for the stimulation phase shift
6~ 6,,,,, the trajectories starting very close to M) approach
MW, follow it towards Q and stay there for a long time.
After a long attraction phase they will be repelled from Q
and attracted by the stable fixed point P. On the other hand,
if 0% 6,,,« then the trajectory of system (4) will be directly
attracted by P or by a copy of P shifted by 27 without or
with an additional rotation on the torus, respectively. For
example, for parameter values as in Fig. 13, stimulation with

0.5
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FIG. 13. Post-stimulus clustering measure H, i.e., the relative
number of trajectories in the smallest cluster of the post-stimulus
responses in variable ¢; versus stimulation phase shift 6. System
(1), (2) is simulated with Gaussian white noise of amplitude D
=0.002. The width of the peak of the measure depends on the am-
plitude of the noise and grows with an increase of the noise ampli-
tude. Number of stimuli N=100, stimulus length Ty =5, and other
parameters: A;=0.2, A,=3.0, 7=4.0, and K=0.4.
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0<< 0.« leads to a simple post-stimulus transient, where tra-
jectories are directly attracted by P. In contrast, stimulation
with 6> 6,,,, results in that the post-stimulus trajectories per-
form one rotation in ¢; on the torus and will be attracted by
a copy of P shifted by 2. In this way, when stimulating
with 6= 6,,, in the presence of noise, there will be trajecto-
ries relaxing to P after stimulus offset according to the first
scenario (6< 6,,,,), and there will be trajectories relaxing to
P according to the second scenario (0> 6,,,,), see Fig. 12(b).
The relative number of trajectories in each of such clusters
can be relatively close to each other (Fig. 13). This explains
the formation of the post-stimulus clustered responses of
variable ¢, of the stimulated system with delay (1), (2), see
Fig. 5.

Simultaneously with the formation of the post-stimulus
response clusters of the variable ¢,, clusters also emerge of
the phase variables ¢, and ¢, see Fig. 5. Variable ¢,, in turn,
gets clustered during stimulation and keeps being clustered
after stimulus offset. In the time course after stimulus offset,
the response clusters in variable ¢; are suppressed when the
trajectories are attracted by the stable phase-locked state, see
also Fig. 12(b). In contrast, the clusters in the phase variables
¢ and i, are preserved for the whole post-stimulus transient
period. The clustering of the variable ¢; means that some
trajectories are approaching the value (p(ls), and the others are
approaching (,D(]S)iQ’JT, where (,ols) is the ¢, coordinate of the
stable fixed point P. Taken mod 27 these clusters are not
seen in Figs. 5(e) and 5(b). Simultaneously, across trials the
variable ¢, attains two different values from Eq. (10) at
stimulus offset. Assuming that the clustering in ¢, is pre-
served, with a simple calculation one arrives at the conclu-
sion that the clustering in variable ¢; determines the cluster-
ing of the phase variables ¢, and ,: Two trajectories from
different clusters in ¢; are also from different clusters in the
phase variables ¢, , and vice versa. Moreover, the “distance”
between the clusters in the phase variables is 7 and the clus-
ters are clearly observed in the cross-trial diagram in Figs.
5(a) and 5(c). Therefore, the optimal stimulation phase shift
Oax Serves both for maximal post-stimulus transient time
and for maximal post-stimulus response clustering of system

(D).

B. Stimulation of periodically modulated synchronized states

A phase-locked state of system (1) is stable only for a
finite interval of parameter K values. Exemplary phase-
locked states (also called fixed points) P and Q [Fig. 2(a)]
have been considered above. When the coupling parameter K
increases, the stable fixed point P loses its stability via a
supercritical Hopf bifurcation at which a stable limit cycle y
is born [Figs. 2(a) and 2(c)]. The limit cycle vy is stable
within a range of the coupling strength. In this regime, called
periodically modulated phase synchronization, the phase dif-
ference ¢, being attracted by v, is periodically oscillating
and is bounded between its maximal ¢]'** and minimal ¢}™"
values [Figs. 2(a), 2(c)]. In this section we study the influ-
ence of stimulation (2) on system (1) in the dynamical re-
gime of periodically modulated phase synchronization given
by the limit cycle 7.
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FIG. 14. (Color) Stimulus-locked responses of system (1) stimu-
lated in a periodically modulated synchronized regime with signal
(2). Cross-trial distributions of the phases i, i, the phase differ-
ence ¢, and the mean phase ¢, are shown in (a), (c), (e), and (g),
respectively. The density of trajectories is encoded with the inten-
sity of gray. Onsets and offsets of stimuli are indicated by vertical
red lines. The features of stimulus-locked dynamics as revealed by
the stochastic phase response analysis (see the Appendix and Refs.
[14-16,18]): The resetting indices p;, p, and the clustering indices
ay, a, of the phases ¢ and i, are shown in (b) and (d); the reset-
ting indices o and o, and the clustering indices &; and &, of the
phase difference ¢, and the mean phase ¢, are shown in (f) and (h).
The resetting/synchronization indices (green curves) and the clus-
tering indices (blue curves) detect unimodal and antiphase bimodal
cross-trial distributions, respectively. The number of stimuli N
=300. Parameters A;=0.2, A,=3.0, 7=4.0, K=0.7, and 6=2.27.

An example of the cross-trial distributions and the corre-
sponding stimulus locking indices (see the Appendix) typical
for stimulation in this regime is shown in Fig. 14. Due to the
randomized stimulus administration, in the prestimulus time
interval the phase difference ¢, fills the whole segment
Lo, @™ ]. A strong and long enough stimulus (2) results in
the phase reset as described in Sec. IV. The coordinates of

the reset states (10) are determined by the stimulation phase
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shift # and are independent of the underlying dynamics of
system (1). For the considered case of a stimulated limit
cycle, the in- and post-stimulus transients are more compli-
cated than those for the case of stimulated phase-locked
states considered above. For the in-stimulus transient, for
instance, the analysis similar to that from Sec. IV can be
applied. The difference here is that the initial conditions of
system (4) summarized over all stimulation trials at the
stimulus onsets fill the whole stripe [ @™, @] X [0,27) in
the phase space in Fig. 6. This stripe intersects the basins of
attraction of the stable reset states A and B of system (8) and,
hence, a more complicated clustered in-stimulus transient in
system (1), (2) can be observed.

When the stimulation is off, the trajectories of system (1)
relax from the reset state to the stable limit cycle y. As dis-
cussed above, the stable manifold M of the saddle-focus
fixed point Q of system (4) serves as separator of two kinds
of post-stimulus dynamics of system (1), (2) when it is
stimulated in a phase-locked state, see Sec. V A. The same
holds for the stimulated regime of periodically modulated
phase synchronization, since the saddle fixed point Q coex-
ists with the limit cycle . The difference here is that the
trajectories of Eq. (4) will be attracted after stimulus offset
by the limit cycle. This is illustrated by Fig. 14, where sys-
tem (1), (2) is stimulated with an optimal stimulation phase
shift = 6,,,,. One can see that there are two different groups
of trajectories splitting from each other when the stimulus is
off. The ¢, coordinate of one of them is decaying, so that the
trajectories are directly attracted by 7. The other group of
trajectories exceeds the value ¢;=2 and is attracted by a
copy of vy shifted by 2. This mechanism, which is similar to
the case of the stimulated phase-locked states, generates two
stereotypical post-stimulus system responses.

With a more detailed consideration of the post-stimulus
dynamics of system (4) one observes another important phe-
nomenon. For the post-stimulus responses, in addition to
splitting trajectories into two post-stimulus clusters, there is
also an additional spreading of them within each of the clus-
ters of variable ¢, [Fig. 14(e)]. Such kind of spreading can
also be observed for the stimulated phase locked-state in a
short time interval after stimulus offset, see Figs. 5(e) and
12(b). However, for the stimulated phase-locked states, in the
course of the post-stimulus transient these broad clusters of
variable ¢, are suppressed, when the trajectories are attracted
by a stable fixed point. For the case of stimulated periodi-
cally modulated synchronized state, the clusters of variable
¢, are preserved for the whole post-stimulus transient period.
Moreover, the spreading of trajectories within the clusters is
preserved as well [Fig. 14(e)]. This phenomenon is strongly
related to the properties of dynamics on a limit cycle.

The initial conditions of system (4) at stimulus offset
slightly differ from each other because of noise, mismatches
in reset states, and time delay (if the phases are reset for a
time shorter than delay). Therefore, each trajectory spends a
different amount of time during post-stimulus transient be-
fore it is attracted by the limit cycle . This results in that the
trajectories approaching vy attain different phase shifts along
the limit cycle with respect to each other. Since there is no
contraction or expansion along v, the trajectories will pre-
serve their phase shifts after a complete rotation around 7,
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which can clearly be seen in Fig. 14(e). This explains the
mechanism of creation of the multicluster stimulus response
of system (1), (2) stimulated at the periodically modulated
synchronized state.

The phenomena above are clearly reflected by resetting
and clustering indices depicted in Fig. 14. Indeed, the reset-
ting and clustering indices of the phases ¢, and ¢, as well as
of the phase difference ¢, (see the Appendix) exhibit peri-
odic oscillations preserved for the whole post-stimulus tran-
sient period. Such periodic oscillations of the stimulus lock-
ing indices are caused by periodic oscillations of clusters of
trajectories of system (1) on the limit cycle y. Within a pe-
riod of rotation on v, the projections of the response clusters
on the corresponding axes demonstrate a subsequent gather-
ing and separation of the clusters, leading to an antiphase
oscillation of the resetting and clustering indices, respec-
tively. Such a dynamics of stimulus locking indices of the
phases ¢, and i, can be seen in Figs. 14(b) and 14(d). The
state of clusters and values of stimulus locking indices are
repeated after each period of the oscillations of trajectories
on vy. In general, this results in a periodic behavior of the
resetting and clustering indices with the same period as that
of the limit cycle vy [Figs. 14(b) and 14(d)].

VI. POST-STIMULUS DYNAMICS IN MULTISTABLE
REGIMES

Multistability is a common phenomenon in complex sys-
tems, in particularly, in systems with delay [23,28,30,31]. In
this section we consider the impact of stimulation (2) on
system (1) stimulated in dynamical regimes, where more
than one stable state exists.

A. Bistability of phase-locked states

The first considered example is the case of two coexisting
stable phase-locked states, denoted by P and P’, shown in
Fig. 3. In both states the phases are in-phase locked with
@T:O. However, P and P’ have different frequencies: Qp
~5.12 and Qp =3.96, respectively. Depending on initial
conditions, a trajectory of system (1) will be attracted by P
or by P’. We calculate the basins of attraction of P and P’
for the class of initial conditions of the form (12) (see also
Ref. [28]). The parameters to be varied here are the phase
shift a and the frequency (). In Fig. 15, the basins of attrac-
tion of the fixed points P(white region) and P’ (gray regions)
are shown in the (a,())-parameter plane. The stable fixed
points P and P’ are depicted by black filled circles and the
corresponding saddle fixed points Q and Q’, which are born
with P and P’ in saddle-node bifurcations, respectively, are
depicted by empty circles.

As mentioned above, after long and strong enough stimu-
lation (2), a post-stimulus transient in system (1) starts from
almost constant initial condition (see Sec. IV). Therefore, the
post-stimulus initial conditions of Eq. (1) are located in Fig.
15 within a small stripe with 1=0 and with the phase shift
a=0. By choosing an appropriate stimulation phase shift 6
one can put the initial conditions of system (1) for the post-
stimulus transient into one or the other basin of attraction. In
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FIG. 15. Basins of attraction of two stable phase-locked states P
(white region) and P’ (gray regions) of system (1) calculated for
initial conditions of the form (12) in the («,{})-parameter plain. (b)
Enlargement from (a). The stable fixed points P and P’ are indi-
cated by filled circles and the saddle fixed points Q and Q' are
indicated by empty circles. I' is the basin boundary of P’ and ar
=I'N{Q=0}, ar=0.95, and ar=~27-0.95. The vertical dashed
line shows the intersection of the stable manifold of Q with the
class of functions (12), where 6,,,,=. Parameters: A;=0.0, A,
=45, =14, and K=1.6.

this way the stimulation can redirect trajectories from one to
the other stable state, e.g., from the phase-locked state P to
P’ and vice versa. This is illustrated in Fig. 16, where the
stimulation is performed with two different phase shifts 6
=0.9 and 6=1.0 resulting in different synchronized dynamics
after stimulus offset, respectively. Note, the stimulus-induced
switching between the states P and P’ does not manifest
itself in a change of the synchronization properties from the
preswitching to the postswitching dynamics of system (1): In
both states the oscillators are in-phase synchronized. How-
ever, after the switching the mean frequency of the synchro-
nized state is significantly different.

The basin boundary I' (boundary between gray and white
regions in Fig. 15) plays an important role in the structure of
the basin of attraction. Taking initial conditions close to I,
one observes that the trajectory of system (4) very closely
approaches the unstable fixed point Q. For such initial con-
ditions the transient dynamics is very similar to that dis-
cussed in Sec. V A, see Fig. 10. As mentioned above, the
fixed point Q' is born in a saddle-node bifurcation with P’
and is of a saddle-focus type. Q' has one real and positive
eigenvalue, one zero, and the others are complex conjugate

6 8
r (a) F (b)
4
;4 e, -~ g
| - e
C} 5 ."\,‘.- QP
Qpr
0
[0} 10 20 t 30 40

FIG. 16. Stimulus-induced switching between the two stable
in-phase-locked states P and P’ from Fig. 3: (a) Stimulation phase
shift #=0.9 induces a transition from P with frequency p~5.12 to
P’ with frequency Qpr=3.96, and (b) stimulation phase shift
=1.0 induces the inverse transition from P’ to P. The vertical axis
stands for the an instantaneous mean frequency ;= @,. Stimula-
tion epochs are indicated by black bars at the top of the graphs.
Parameters: I=15, T4=2.0, A;=0.0, A,=4.5, 7=1.4, and K=1.6.
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FIG. 17. Mean post-stimulus transient time 7, versus the stimu-
lation phase shift 6 calculated for the stimulated system (1), (2).
; _ gD (2

Three local maxima are observed for 6=6_ ., 6., and 6, cor-
responding to the three points which closely approach the stable
manifolds of saddle fixed points Q (fpy,) and Q' (6 and 62))

(see also Fig. 15). The number of stimuli N=100. Parameters A,
=00, Ay=4.5, 7=1.4, K=1.6, [=25, and T,,=2.5.

with negative real parts. The point Q' is placed on I' and
thus, its stable manifold M“)(Q’) contributes to the basin
boundary and serves as separator between basins of attrac-
tion of two different stable phase-locked states P and P’. In
this way, the basin boundary I' shown in Fig. 15 represents
an intersection of the stable manifold M (Q') with a class
of functions (12). Therefore, analogously to the case consid-
ered in Sec. V A, one may expect that a very long post-
stimulus transient in system (1), (2) may occur also for the
case illustrated in Fig. 15. Indeed, from Fig. 15 it follows
that the basin boundary I intersects the line {1=0 in points
denoted by ay. Since the post-stimulus initial conditions very
closely approach constant functions, they can be adjusted to
very closely approach the point ar € I' (Fig. 15). This can be
achieved by strong and long enough stimulation with phase
shift 6= ar. Then, during the post-stimulus transient, the tra-
jectories of system (1) will follow the stable manifold M) of
Q' approaching the saddle point Q' and spend a long time
there before being attracted by one of the stable fixed points
Por P'.

For the parameter values as in Fig. 15, there exists another
saddle-focus fixed point Q which is born simultaneously
with P. The stable manifold M)(Q) of the fixed point Q also
has an intersection with the class of initial functions (12) and
with the line =0 [dashed line in Fig. 15(b)], which has
been discussed in Sec. V A. Therefore, there is another opti-
mal value of the phase shift a=6,,,, such that stimulation
with phase shift = 6,,, brings the post-stimulus initial con-
ditions of system (1) close to M®(Q). The corresponding
post-stimulus trajectories then approach the saddle fixed
point Q, which results in a long post-stimulus transient to-
wards the stable phase-locked state P, similar to that illus-
trated in Fig. 10.

The length of the mean post-stimulus transient time 7,
calculated for the stimulated system (1), (2) for parameter
values from Fig. 15 is depicted in Fig. 17 versus stimulation
phase shift 6. One can see that there are three optimal values

of = 01%30(, 01(2)(, and 6,,,,, where the transient time 7, attains
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FIG. 18. Basins of attraction of the stable phase-locked state P
(gray regions) and the stable desynchronous limit cycle w (white
regions) of system (1) [Fig. 4(b)] calculated for initial conditions of
the form (12) in the (a,{))-parameter plain. The black filled circle
indicates the stable fixed point P and the empty circle indicates the
saddle fixed point Q. Parameters A;=0.2, A,=0.1, 7=7.2, and K
=0.28.

local maxima. These are the points, where the post-stimulus
initial conditions of system (1) come close to the stable
manifolds M®(Q') and M (Q) of the fixed points Q' and
0, respectively. More precisely, the optimal phase shifts
051:;5() correspond to the phase shifts a (Fig. 15), which are
placed on the basin boundary I' and, thus, belong to the
stable manifold M®(Q"). Stimulation with such phase shifts
directs the trajectories during the post-stimulus transient to
the saddle fixed point Q'. The optimal phase shift 6,,,, cor-
responds to the stable manifold M*)(Q), and stimulation with
such a phase shift directs the trajectories to the saddle fixed
point O, see also Sec. V A.

B. Bistability of synchronous and desynchronous dynamics

Multistability in system (1) occurs not only between syn-
chronized states, but also between synchronized and desyn-
chronized states, as shown in Sec. III (see Fig. 4). An ex-
ample of a stable phase-locked state P which coexists with
the stable desynchronized limit cycle w is shown in Fig. 4(b).
In this section we consider the impact of stimulation (2) on
the dynamics of system (1) when it exhibits a multistable
regime with the stable point P and a cycle u. We consider
parameter values indicated by point A in Fig. 4(a).

With the use of the class of linear functions (12), in Fig.
18 the basins of attraction of the stable phase-locked state P
(gray regions) and the desynchronous limit cycle (white re-
gion) are shown in the (a,{))-parameter plane. Stimulation
resets the variables of system (1) to the almost constant func-
tions (Sec. IV). Therefore, as before, the initial conditions of
system (1) for the post-stimulus transient are located close to
the line =0 with @= 6 in the (a,{))-parameter plane in Fig.
18. By varying the stimulation phase shift #e[0;2), the
initial conditions can be placed at any point on the horizontal
axis (1=0. As one can see, this line intersects both basins of
attraction in Fig. 18 and, thus, stimulation (2) with appropri-
ate phase shift € can redirect the dynamics of the system
from one stable state to the other.
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FIG. 19. Stimulus-induced switching between the stable phase-
locked state P and the stable desynchronous limit cycle u [Fig.
4(b)]: (a) Stimulation phase shift #=2.3 induces a transition from P
to u, and (b) stimulation phase shift #=2.2 induces an inverse tran-
sition from w to P. Stimulation onsets and offsets are indicated by
vertical dashed lines. Parameters: I=15.0, T4=8.0, A;=0.2, A,
=0.1, 7=7.2, and K=0.28.

The switching between synchronized and desynchronized
states caused by stimulation is illustrated in Fig. 19. Starting
in a synchronized phase-locked regime, stimulation can ef-
fectively desynchronize system (1) [Fig. 19(a)]. On the other
hand, starting from the desynchronized dynamics, the stimu-
lation can also induce phase-locked synchronization [Fig.
19(b)]. Applying multiple stimuli one can end up with two
different situations: (i) All trajectories before and after stimu-
lation will exhibit the same synchronized or desynchronized
dynamics, respectively, or (ii) there will be a mixture of tra-
jectories, attracted by both stable synchronized and desyn-
chronized states.

VII. DISCUSSION

We studied stimulus-locked responses of two phase oscil-
lators coupled with delayed self-feedback. For this, we first
investigated the spontaneous (stimulation-free) dynamics of
our model equation (1). Our analysis shows that it makes a
big difference whether two phase oscillators are coupled with
a delayed self-feedback [Eq. (1)] or with a transmission de-
lay [28]. In phase oscillators coupled with a transmission
delay a variety of phase locked states occurs, depending on
model parameters [28]. In contrast, the delayed self-feedback
from Eq. (1) leads to several qualitatively different dynami-
cal regimes, ranging from desynchronized motion, phase
locking, periodically modulated synchronization to chaotic
phase synchronization, emerging in dependence on model
parameters.

The spontaneous dynamics of the two coupled PLLs has a
remarkable feature. In phase oscillators coupled either with-
out delay [51-53] or with a transmission delay [28,31] strong
coupling guarantees synchronization: A transition to syn-
chronization can be achieved by means of a sufficiently
strong increase of the coupling strength. What we found in
our model, in two phase oscillators coupled with a delayed
self-feedback [Eq. (1)], is the direct opposite. For sufficiently
strong coupling strength the oscillators become desynchro-
nized. This is particularly intriguing since this model equa-
tion stands for two coupled PLLs (Fig. 1), which are two
generic phase-locking devices, that are supposed to mutually
adapt their phases. In fact, this result illustrates that the ac-
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tion of a PLL with internal delay decisively depends on the
structures it interacts with (see also Refs. [39,40]).

The essential ingredient of our model is a time-delayed
self-feedback. This mechanism is relevant in the nervous
system, as large-scale feedback loops constitute an important
class of neuronal circuits, which are involved in closed-loop
computations and optimized signal processing, e.g., at the
level of thalamocortical and corticocortical sensorimotor
loops [44,46—48]. Also, to compensate for errors in move-
ment execution, the cerebellum receives a self-feedback sig-
nal with a delay from the muscles, which conveys informa-
tion about actually performed movements [54]. Closed loop
mechanisms and delayed feedback are not only relevant for
neural networks [19,22], biology [21,23], and neuroscience
[20,40,55], but also for laser physics [56,57] and other fields
of physics [31,32,34,35,39,58-61].

Using a stochastic phase response analysis [14-16,18]
and bifurcation theory we studied the dynamical mechanisms
underlying the stimulus-locked responses. In particular, this
enabled us to explain the formation of in- and post-stimulus
response clustering of the phase variables in the system’s
phase-locked regime. While a stimulus of sufficient strength
determines the in-stimulus response clustering completely
(Sec. TV), the post-stimulus dynamics crucially depends on
the model’s dynamical regime (Secs. V and VI).

Previous studies devoted to stimulus-locked responses of
two phase oscillators coupled without delay where carried
out with different stimulation schemes and coupling schemes
[14-16,18]: Apart from first order stimulation terms, such as
Si(4;))=X(1)I cos(sh;— 0)) [see Eq. (2)], also stimulation terms
of higher order, such as S;(#;)=X(t)I cos(2¢;), have been
studied [17]. Not only lowest-order coupling terms, such as
sin(i,— ¢;) [see Eq. (1)], but also bistable, higher-order cou-
pling terms, such as sin(g,— i+ 6)—sin[2(r— b+ 6)]
—sin[4 (¢, — i, + 0)], have been taken into account [18]. In all
of these studies pulsatile stimuli (with appropriate param-
eters) caused a phase reset or a response clustering or a phase
reset followed by a response clustering [14-16,18].

The two phase oscillators coupled with delayed self-
feedback [Eq. (1)] may show similar, but also novel
stimulus-locked responses. The type of the response depends
on the dynamical regime, which, in turn, depends on the
choice of model parameters. In the phase-locked regime
stimuli with appropriate parameters elicit a phase reset fol-
lowed by an antiphase response clustering, comparable to
what has been found for two phase oscillators coupled with-
out delay [14-16,18]. In contrast, in the regime of periodi-
cally modulated phase synchronization the two phase oscil-
lators coupled with delayed self-feedback [Eq. (1)] behave
completely different: We observe a stimulus-locked oscilla-
tion between phase reset and response clustering (with two
anti-phase response clusters), which is combined with an os-
cillatory modulation of the stimulus-locked synchronization
(Fig. 14).

Reverberating phase resets of this kind might be relevant
in the context of neural responses evoked by visual stimuli.
Already simple visual stimuli (like black and white checker-
board patterns) typically elicit not just a single response, but
a sequence of responses, as revealed by CTA [62-65]. The
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mechanism underlying the generation of reverberating corti-
cal activations of this kind is still a matter of debate, where
possible components might be feedback mechanisms in
cortico-cortical and cortico-subcortical loops (see, e.g., Ref.
[65]).

Multistability is a phenomenon which is typically ob-
served in systems with time delay [23,28,30,31,34,35]. Also
in our model, given by Eq. (1), we observe not only unistable
dynamical regimes, but also multistability. We demonstrate
how appropriate stimuli may shift the systems dynamics ei-
ther from one stable synchronized state to another synchro-
nized state with a different frequency or from a synchronized
to a desynchronized state. Massive long-term changes of the
dynamics caused by a single-shot stimulus may be relevant
in the context of novel deep brain stimulation techniques
which aim at specifically desynchronizing pathological neu-
ral synchrony in particular target areas in neurological disor-
ders such as Parkinson’s disease or epilepsy [66,67].

Another interesting finding in this context is the depen-
dence of the maximal transient time (Sec. V A) on the phase
shift 6 between the stimuli of the two oscillators S| and S,
(Sec. II). For instance, in the phase-locked regime (Sec. V A)
stimulation with a particular phase shift 6,,, leads to a
nearly singular transient time (i.e., resynchronization time).
Remarkably, this particular phase shift 6,,,, is not equal to
the value of the phase difference belonging to an unstable
fixed point, as it is the case in phase oscillators coupled
without delay [14—16]. Rather, slowest resynchronization is
achieved for a 6,,,,, which resets the system of oscillators in
a way that it gets trapped at an infinite-dimensional stable
manifold M), along which it creeps towards an (unstable)
saddle point, from where it is eventually repelled towards the
stable synchronized state. Put otherwise, the delay causes an
infinite-dimensional dynamics, which leads to a completely
different transient dynamics as compared to an oscillator
model without delayed self-feedback. Slowest resynchroni-
zation, accompanied by maximal response clustering, can be
elicited if the stimuli are tuned to the complex structure of
the infinite-dimensional phase space.

From a medical standpoint this might be relevant. As
shown above, an appropriate stimulus causes a particularly
strong and long-lasting (but nevertheless transient) desyn-
chronization due to a coupling with delayed self-feedback.
Dynamical effects caused by delays involved in the interac-
tion of oscillators may, hence, be exploited for control pur-
poses. However, in an experimental or medical application it
is typically difficult or impossible to tune a phase shift 6 of
the stimulation mechanism [see Eq. (2)]. Rather, for an ex-
perimental application the timing pattern of stimulus admin-
istration has to be chosen appropriately. More precisely, in
order to induce a long-lasting transient desynchronization of
oscillators, one has to administer identical stimuli (S;=S5,,
i.e., 6=0) at different times, with appropriately chosen delay
in between (see also Refs. [14,15,68]). In phase oscillators
without delay in the coupling, it has been shown that simul-
taneous stimulation of two oscillators with stimuli S; and S,
with a phase shift 6,,,, of S, can be approximated by deliv-
ering identical stimuli at different times, with a time shift
Tmax corresponding to €., 1.€., Tax= Omax/ T> Where T is the
(mean) period of the oscillators (see [15]). In this way, our
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stimulation approach can be applied to an experimental sys-
tem, too. The overall goal of our study is to contribute not
only to a better understanding of the mechanisms of transient
and complex stimulus-locked responses, but also to the de-
sign of highly effective, but nevertheless mild control tech-
niques for neural activity. Apart from medical applications
one may envisage interesting applications to neuroscience,
biology, and physics, where, e.g., the functional role of os-
cillations and synchronization processes [69—73] might be
further clarified by perturbing these processes with suitable
pulsatile stimuli.
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APPENDIX: STIMULUS LOCKING INDICES

To quantify the extend of stimulus locking of the variables
1, and @ 5 of system (1), (2), following Refs. [14—18] we
consider time-dependent stimulus locking indices

| N
_ eivx(k)(t)
k=1

Nx(0)]= (A1)

The time ¢ here is the time relative to stimulus onset within
each stimulation window around stimulus onset. So, each
window has a time axis ¢, where the onset of the stimulus lies
in r=0. The averaging is performed over N stimulation trials,
i.e., k is the stimulus number. The variable x(7) in Eq. (Al))
is one of ¢, ¥, @, or ¢, and x¥(¢) indicates the corre-
sponding variable in the stimulation window around the kth
stimulus. Integer v is the order of indices corresponding to
the vth Fourier mode of the phase distributions over trials,
which reflects an emergence of a wv-cluster state of the
stimulus-induced system responses.
Further, we define resetting indices

pi() =N[g(D)],

o =Nlg 0], j=12. (A2)
and clustering indices
a;(t) = N[0 ] = M[(0)],
50 =Nl (0] -Mlei(n)],  j=1.2. (A3)

One can see that the resetting indices attain large values
close to 1 if the distribution of the corresponding variable of
system (1), (2) over stimulation trials exhibits a single sharp
peak. On the other hand, for two peaks in the distribution
with distance between them close to r, the resetting indices
will be small, whereas the second order indices \, will be
large. The clustering indices will thus be also large indicating
a two-cluster state of the distribution of the corresponding
variable. For the higher-order clustering states up to a uni-
form distribution of the phases, both indices A; and \, are
small and so are the resetting and clustering indices.
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